

Threat Modeling & Risk Assessment for
Developers

Process Guide

Table of Contents

Introduction .. 3

Architecture-level Threat Modeling .. 3

Step 1. Identifying assets, impact, and security objectives .. 4

Step 2. Creating an application overview .. 5

Step 3: Decomposing the Application ... 5

Step 4: Identifying and Prioritizing Threat Scenarios .. 6

Step 5: Countermeasures and Risk Mitigation .. 8

Developer-centric Functional Threat Modeling ... 8

Abuse Cases .. 9

Evil User Stories .. 9

Top Attack Vectors for Threat Scenario Brainstorming ... 10

Introduction

Threat modeling and risk assessment is a structured approach that enables an organization to
identify, quantify, and address the threats to a system based on risk to the business. It involves
understanding the system from an attacker's perspective, which can significantly enhance the
security measures. The primary goal of threat modeling is to provide the team with a systematic
analysis of what controls or defenses need to be included, given the nature of the system, the
data it must protect, and the potential threats to that data.

Threat modelling has traditionally been applied at the architecture level, looking at system
components and data flows to identify attack pathways. When considering an application system,
additional consideration should be given to requirements or user-stories, so abuse cases can be
identified early on and considered during design. This will save the organization the additional
cost and headaches of identifying flaws later when the system is in production.

The threat modeling process is iterative and should be repeated as necessary throughout the
lifecycle of a system to reflect changes in threats and the environment. At a minimum, it should
be applied early in the application life cycle when high level functionality and architecture is
defined, also iteratively at the requirement or user-story level to determine abuse cases and
design accordingly. It is also recommended that threat modelling is repeated at the architecture
level periodically (at least once a year).

Architecture-level Threat Modeling

This is the traditional threat modelling process that can be applied to any system architecture.
The following key steps are involved:

1. Identifying assets, impact, and security objectives: Clearly outline what digital assets
need to be protected and why. Consider possible threat actors, and assets at risk, and
impact to those assets because of a successful attack.

2. Creating an application overview: Map out the application's architecture, including data
flows and external entities. Review the security design, and document what is in place, as
well as any gaps.

3. Decomposing the Application: Break down the application into its components,
interfaces, and data stores, then identify trust boundaries.

4. Identifying and Prioritizing Threat Scenarios: identify threat scenarios based on security
gaps identified and assign risk rating based on impact and likelihood to assist with
prioritization.

5. Countermeasures and Risk Mitigation: Develop strategies to mitigate identified threat
scenarios and reduce risk to acceptable levels.

The process of threat modeling can be broken down into three primary stages, with each phase
thoroughly documented throughout its execution. The culmination of this process is a
comprehensive threat model for the application in question.

Step 1. Identifying assets, impact, and security objectives

When an attack on a system occurs, it often results in a breach of the core principles of
information security: confidentiality, integrity, and availability, commonly known as the CIA
triad. For instance, data exfiltration can lead to a breach of confidentiality as sensitive information
is illicitly transferred from the system to an external location, falling into unauthorized hands.
Data modification undermines data integrity, where unauthorized alterations to data can result
in misinformation, corrupt processes, or flawed decision-making. Lastly, Data deletion attacks
strike at availability, where critical data is removed, causing service disruption and potentially
leading to significant downtime or loss of trust. Each of these represents a serious security
incident that can have far-reaching consequences for the organization, its stakeholders, and its
customers.

A business impact assessment should be performed to document the digital assets handled by
the system (e.g. PII, payment data, health data, business critical data, etc.), any resources that
incur cost (e.g. memory, CPU), and related impact to each asset when a potential threat scenario
takes place in the future.

The impact of a threat scenario to an asset is the effect it would have on the business in terms
of 3 factors: reputational damage, affected users, and financial damage. These are used along
with likelihood values to determine the risk for a given threat scenario (see “Identifying and
Prioritizing Threat Scenarios” section). Impact can be assigned based on the following general
guidance (can be adjusted for each organization):

a) Reputational Damage
0. None
1. Minimum: Negative article on local news - Very limited number of people will care

about this - Limited potential for customer loss.
2. Moderate: Negative article on regional news - Might lose some customers and not

able to easily attract new customers.
3. High: Negative article on national/international news - Tarnish the brand

permanently - Lose most customers, very difficult to attract any new customers.
World ending situation including fines, contractual breach, lawsuits, etc.

b) Affected Users
0. No affected users
1. Single user can be exploited at a time.
2. Some users of the system or application are impacted.
3. Majority of users impacted.

c) Financial Damage (this is specific per company)

0. None
1. Hundreds
2. Thousands
3. Millions

Step 2. Creating an application overview

Creating an application overview is a foundational step in the threat modeling process, serving
as a blueprint for understanding the application's architecture, data flow, and interaction with
external entities. This comprehensive overview involves documenting the application’s
components, such as servers, databases, and third-party services, and mapping out how
information is processed and stored.

It also includes detailing the user roles and their interactions with the application, as well as
identifying entry and exit points that could potentially be exploited. This holistic view not only
aids in pinpointing areas of vulnerability but also facilitates clear communication among team
members and stakeholders regarding the application's structure and potential security risks. By
establishing a clear picture of the application, developers and security professionals can more
effectively strategize and prioritize their efforts to protect against threats.

Figure 1: Example 4-Tier Application Architcture with Users and Threat Actors

Step 3: Decomposing the Application

This phase focuses on comprehensively understanding the application and its interactions with
external systems. This phase includes:

• Developing high level use cases to grasp how the application is utilized.

• Identifying points of entry to determine potential interaction points for attackers.

• Pinpointing critical assets that may attract attackers.

• Establishing different levels of trust to define the access privileges for external entities.

The findings from this step are documented and used to create data flow diagrams that map out
the application's pathways, emphasizing areas of privilege transition (see figure 1).

Step 4: Identifying and Prioritizing Threat Scenarios

Identifying threats is pivotal and involves employing a threat classification system. Architecture
diagrams and data flows from the previous steps aid in pinpointing potential targets for threats,
including storage devices containing digital assets, sensitive functions, and other assets as
documented.

Models such as STRIDE provide mnemonics that can facilitate the identification of attacks that
can form a threat scenario. These are as follows:

Attack Desired property Definition
Spoofing Authenticity Pretending to be something or someone other

than yourself

Tampering Integrity Modifying something on disk, network, memory, or
elsewhere

Repudiation Accounting
(audit)

Claiming that you didn't do something or were not
responsible

Information
disclosure

Confidentiality Someone obtaining information they are not
authorized to access

Denial of service Availability Exhausting resources needed to provide service

Elevation of
privilege

Authorization Allowing someone to do something they are not
authorized to do

All data flows should be reviewed from an attacker to the target, and possible attacks should be
considered at each step. Attacks are further explored through attack trees, with each tree
representing a specific threat goal (generally one of C, I, or A).

https://en.wikipedia.org/wiki/STRIDE_(security)
https://en.wikipedia.org/wiki/Attack_tree

Figure 2: Example Application Attack Tree

A given branch in an attack tree forms a threat scenario. Risks posed by each threat scenario are
assessed using models such DREAD for quantitative analysis or qualitative approaches based on
general risk factors like likelihood and impact.

The likelihood that a threat scenario would take place is based on 3 factors: reproducibility,
exploitability, and discoverability. These are measured as follows:

a) Reproducibility: Number of conditions that need to be true where the outcome of those
conditions is not in control of the attacker or is random.
0. Too many factors involved or quite a few conditions need to take place.
1. More than one factor is required for the attack to be successful (e.g. user must be

logged on + not be security aware)
2. Only one factor is required for the attack to be successful (e.g. user must be logged

on)
3. No factors are required to be true that are random or not under control of the

attacker.

b) Exploitability: this is about the required skills and expertise.
0. Next to impossible. Even with direct knowledge of the vulnerability we do not see a

viable path for exploitation (Only Neo could hack this)
1. Advanced techniques required, custom tooling/moderate skills (DEFCON

Presenter). Only exploitable by authenticated users.
2. Advanced techniques required, custom tooling/moderate skills (Average Bug

Bounty Participant). Exploitable unauthenticated users.
3. Trivial - just a web browser or basic/publicly available tools (Script Kiddie)

a) Discoverability

https://en.wikipedia.org/wiki/DREAD_(risk_assessment_model)

0. Very hard or impossible to discover even given access to source code and privilege
access to running systems.

1. Inside knowledge or access to application internals are required to discover the
issue.

2. Advanced tools and techniques are required to discover the issue.
3. Details of faults like this are already in the public domain and can be easily

discovered using a search engine. Weakness can be easily discovered by most
computer users. The information is visible in the web browser address bar or in a
form.

Step 5: Countermeasures and Risk Mitigation

Addressing vulnerabilities involves the implementation of appropriate countermeasures that can
lower the risk in the most effective way. Controls should be identified to address each of the
vulnerabilities that make up an attack chain (aka threat scenario).

After ranking threat scenarios according to their risk levels in the previous step, it becomes
possible to prioritize them for mitigation based on risk. When deciding what controls to
implement, those that impose the lowest effort and address the threat scenario as close to the
target (or root of the attack tree) should be considered. The most effective way to mitigate a
threat on the attack tree is to mitigate it as close to the root as possible. Although this is
theoretically sound, it is not usually possible to simply mitigate a threat without other
implications.

Options for risk management include:

• Acceptance: acknowledging the risk as tolerable.

• Elimination: removing elements that introduce vulnerabilities.

• Mitigation: implementing measures to lessen the risk's likelihood or impact.

Developer-centric Functional Threat Modeling

Developer-centric functional threat modeling is a critical approach in the secure development
lifecycle that shifts the traditional perspective of threat identification and mitigation towards a
more functional viewpoint. This approach emphasizes understanding and anticipating how an
application can be misused or abused, directly involving the development team in the security
conversation. By integrating abuse cases and "evil user stories" into the threat modeling process,
developers are encouraged to think like attackers, considering not just how features should work
but how they could be exploited.

In Agile or DevOps environments, threat modeling, including identifying abuse cases or "evil user
stories," is a practice that is gaining traction. The goal of these activities is to anticipate and design
against potential security threats by thinking from the perspective of an attacker. This approach
helps in the early identification of security vulnerabilities that might be exploited and allows
teams to implement countermeasures proactively.

Abuse Cases
These are scenarios that describe how the functionalities of a system can be misused or abused.
They are essentially the opposite of use cases, which are intended to describe how a system
should be used to achieve a positive outcome. Abuse cases help in understanding the system from
an attacker's perspective. These are structured descriptions that outline how an application's
features could be misused or abused. They are typically more formal and detailed, providing a
comprehensive view of potential security threats from the perspective of an attacker. Abuse cases
focus on identifying and understanding the negative actions that could be performed on a system,
allowing developers and security teams to design and implement appropriate security controls to
mitigate these risks.

Example: Account Takeover via Password Reset Functionality

• Description: An attacker exploits the password reset functionality to take over another
user's account. The attacker uses social engineering or other methods to obtain or guess
the email address associated with a user account. They then initiate a password reset
request and intercept or fraudulently obtain the password reset link, allowing them to
reset the user's password and gain unauthorized access to the account.

• Mitigation: Implement multi-factor authentication for password resets, requiring users
to verify their identity through an additional channel (e.g., a code sent to a mobile
phone) before allowing a password change. Use secure, token-based mechanisms for
password reset links, and ensure that these tokens expire within a short timeframe.

Evil User Stories
Similar to abuse cases, evil user stories are a way to capture a requirement from the point of view
of an attacker, rather than a legitimate user. They follow the user story format common in Agile
development (e.g., "As an attacker, I want to inject SQL commands into input fields so that I can
access the database and extract confidential data."). An easy way to do this is to add a comma (,)
followed by “but” to the user story to describe the malicious actions that could be performed,
aka “the evil story”.

Example: "As user, I want to be able to upload files that are required for my work, but as a
malicious user, I want to exploit the application's file upload feature to upload and execute a
malicious script, allowing me to gain unauthorized access to the server."

• Narrative: The attacker identifies a file upload feature in the web application intended
for uploading profile pictures or documents. They craft a malicious script disguised as a

legitimate file type (e.g., an image) and upload it through the feature. The application
fails to properly validate or sanitize the uploaded file, executing the malicious script and
compromising the server.

• Mitigation: Strictly validate file types on both client and server sides, allow only specific,
safe file extensions, and perform server-side checks to ensure that the uploaded files
match the expected formats. Implement secure, server-side file handling practices and
never execute uploaded files or scripts.

Incorporating these practices into the development process allows Agile and DevOps teams to
integrate security considerations into the product design and development lifecycle early on. This
is part of a broader strategy known as DevSecOps, which aims to build a culture and environment
where building, testing, and releasing software can happen rapidly, frequently, and more securely
by integrating security measures and testing throughout the development lifecycle, rather than
as a final step.

Incorporating abuse cases and evil user stories into threat modeling enables developers to
proactively identify and address security vulnerabilities within the design and implementation
phases of software development. This proactive approach fosters a culture of security awareness
and responsibility among developers, encouraging them to consider security implications
throughout the development process. By understanding the mindset of potential attackers and
the tactics they might use, developers can design and implement more robust security measures,
ultimately enhancing the resilience of the application against malicious activities.

Top Attack Vectors for Threat Scenario Brainstorming

To assist individuals in the brainstorming process and in devising potential threat scenarios, it's
crucial to consider a broad spectrum of attack vectors. These vectors represent various methods
by which attackers could exploit vulnerabilities in both authenticated and unauthenticated
contexts. Understanding the top attack vectors can help in identifying and mitigating potential
threats to the system.

Fuzzing
Testing the application with invalid, unexpected, or random data to uncover vulnerabilities.

SQL Injection (SQLi)
Exploiting vulnerabilities to execute malicious SQL commands within a database system.

Denial of Service (DoS)
Overloading the system resources to disrupt service to legitimate users.

Creating Fake Users
Registering fake user accounts to bombard the system.

Cross-Site Scripting (XSS)
Injecting malicious scripts into content viewed by other users to steal data or impersonate users.

Insecure Direct Object References (IDOR)
Accessing unauthorized data by manipulating input values that reference objects directly.

Password Reset
Exploiting password reset functionalities to gain unauthorized access to user accounts.

Server-Side Request Forgery (SSRF)
Tricking the server into making requests to unintended locations or services.

Spear Phishing
Targeted phishing attacks designed to deceive specific individuals into divulging sensitive
information.

Privilege Escalation (Users)
Exploiting vulnerabilities to gain higher-level permissions than originally assigned.

File Upload (Direct Shell Upload)
Uploading malicious files to gain unauthorized access or execute arbitrary code on the server.

XML External Entity (XXE)
Exploiting XML processors to execute unauthorized commands or access files.

Remote File Inclusion/Local File Inclusion (RFI/LFI)
Exploiting vulnerabilities to include files from a remote or local file system.

Multi-Factor Authentication (MFA) Bypass
Circumventing multi-factor authentication mechanisms to gain unauthorized access.

Verification Email Bypass
Exploiting vulnerabilities to bypass email verification processes during account creation or
modification.

Server-Side Template Injection (SSTI)
Injecting malicious templates into server-side templates to execute arbitrary code.

Directory Traversal
Exploiting insufficient security controls to access files and directories stored outside the web root
folder.

HTTP Request Smuggling

Manipulating HTTP requests to bypass security controls or access unauthorized information.

Log Poisoning
Injecting malicious content into log files to exploit vulnerable log processing.

Null Injection
Inserting null bytes to manipulate the application's logic or access unauthorized resources.

OAuth-Based Attacks
Exploiting vulnerabilities in OAuth authentication processes to gain unauthorized access.

Deserialization
Exploiting insecure deserialization to execute arbitrary code or commands on the application
server.

WebSocket Attacks
Exploiting vulnerabilities in WebSocket implementations to intercept or manipulate messages.

CRLF Injection/Parameter Pollution
Injecting carriage return and line feed characters to manipulate HTTP headers or exploit web
applications.

Cache Deception
Tricking the application into caching sensitive information that can be accessed by unauthorized
users.

Cache Poisoning
Injecting malicious content into a web cache to spread to other users.

CORS-Related Attacks
Exploiting misconfigured Cross-Origin Resource Sharing (CORS) policies to bypass access controls.

Host Header Injection
Manipulating the host header in HTTP requests to spoof websites or bypass security controls.

OS Command Injection
Executing arbitrary system commands on the server through vulnerable application inputs.

Web Cache Entanglement
Exploiting cache mechanisms to serve malicious content or steal sensitive information.

JSON Interoperability Vulnerabilities
Exploiting differences in JSON parsers to bypass input validation or security controls.

Man-in-the-Middle (MitM) Attacks
Intercepting and possibly altering the communication between two parties who believe they are
directly communicating with each other.

Clickjacking
Tricking users into clicking something different from what they perceive, potentially revealing
confidential information or allowing system control.

Race Condition Exploits
Taking advantage of a system's process sequence to perform malicious actions while a program
is being executed.

Subdomain Takeover
Exploiting a subdomain that points to a service not in use (orphaned DNS entry) to serve
malicious content.

Credential Stuffing
Using stolen account credentials to gain unauthorized access to user accounts, relying on
password reuse across services.

Session Hijacking
Exploiting the web session control mechanism to steal or manipulate session tokens and take
over a legitimate user's session.

Typo-Squatting and Domain Phishing
Registering domains that closely resemble legitimate ones to deceive users into visiting malicious
sites or divulging sensitive information.

This comprehensive list of attack vectors serves as a foundation for identifying potential
vulnerabilities within a system and formulating strategies to mitigate associated risks.

	Introduction
	Architecture-level Threat Modeling
	Step 1. Identifying assets, impact, and security objectives
	Step 2. Creating an application overview
	Step 3: Decomposing the Application
	Step 4: Identifying and Prioritizing Threat Scenarios
	Step 5: Countermeasures and Risk Mitigation

	Developer-centric Functional Threat Modeling
	Abuse Cases
	Evil User Stories
	Top Attack Vectors for Threat Scenario Brainstorming

